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Abstract We examined the e!ects of di!erent methods
of forest regeneration on the genetic diversity of
lodgepole pine (Pinus contorta var &latifolia') using two
di!erent DNA-based molecular markers [randomly
ampli"ed polymorphic DNA (RAPDs) and microsatel-
lites or simple sequence repeats (SSRs)]. Genetic diver-
sity was estimated for 30 individuals in each of four
populations for the following three stand types: (1) ma-
ture lodgepole pine ('100 years); (2) 20- to 30-year-old
harvested stands left for natural regeneration; (3) 20- to
30-year-old planted stands (4 stands of each type); and
one group of 30 operationally produced seedlings.
There was no signi"cant e!ect of stand type on ex-
pected heterozygosity, although allelic richness and
diversity were much higher for SSRs than for RAPDs.
Expected heterozygosity ranged from 0.39 to 0.47
based on RAPDs and from 0.67 to 0.77 based on SSRs.
The number of alleles per locus for SSRs ranged from
3 to 34 (mean 21.0), and there was a signi"cant relation-
ship between sequence repeat length and the number of
alleles at a locus. Both marker types showed that over
94% of the variation was contained within the popula-
tions and that the naturally regenerated stands sam-
pled had lower (not signi"cant) expected heterozygosity
than the planted or unharvested stands. The group
of seedlings (assessed by RAPDs only) had expected

heterozygosity and allele frequencies similar to those of
the unharvested stands. Genetic distance measures were
higher than obtained previously in the species using
isozyme markers. There was no correlation between the
two marker types for pair-wise genetic distances based
on populations analyzed by both methods. Pair-wise
genetic distance measures and an ordination of allele
frequencies for both marker types showed little e!ect of
geographic location or stand type on genetic similarity.
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Introduction

Genetic diversity provides the template for adaptation
and evolution of populations and species. There-
fore, maintenance of genetic variation is an important
objective of biodiversity conservation. Commercial
management and breeding of plant species often leads
to changes in the pattern of, and usually reductions in,
genetic diversity (Harlan 1975), and loss of genetic
diversity in herbaceous crop species has long been
recognized as a potentially serious problem (Frankel
and Bennett 1970; Harlan 1975). Scientists and man-
agers have also shown concern about the potential
for loss of genetic diversity in commercially managed
forest tree species (Libby et al. 1969; Jasso 1970;
Richardson 1970; Ledig 1992; Rogers and Ledig 1996).
Indeed, conservation of genetic diversity may be one of
the most important issues in#uencing future forestry
practices (Boyle 1992; Namkoong 1992).

Studies examining the impact of forest harvesting
and regeneration on genetic diversity have produced
mixed results. Knowles (1985) found no di!erence in
genetic diversity between "re-origin and arti"cially re-
generated stands of jack pine and black spruce. In



contrast, GoK moK ry (1992) reported that planted stands
of Norway spruce had signi"cantly less genetic diver-
sity than unharvested or naturally regenerated stands.
Even with wild seed collections, inadvertent loss of
genetic diversity or shifts in allele frequencies may re-
sult from selection during seed collection, processing
and seedling production (Silen and Osterhaus 1979;
Campbell and Sorensen 1984; El-Kassaby and Thom-
son 1996; Stoehr and El-Kassaby 1997). On the other
hand, selection during nursery production may be less
intense than that experienced at the early establishment
phase in natural stands (Muona et al. 1988), leading to
higher levels of genetic diversity in arti"cially regen-
erated stands.

Lodgepole pine (Pinus contorta var &latifolia') is
an early successional conifer that has a continuous
distribution in western North America, exhibits wide
ecological amplitude and is an important commercial
species in west-central Alberta, Canada and elsewhere
(Ying et al. 1984). Wind-pollinated conifers typically
show very high levels of within-population genetic vari-
ation and relatively less di!erentiation among popula-
tions (Guries and Ledig 1981; Yeh 1981; Hamrick and
Godt 1989). This has been veri"ed for lodgepole pine in
western Canada, with 96}98% of variation in isozymes
found within populations (Yeh and Layton 1979;
Dancik and Yeh 1983; Yang et al. 1996). Still, isozyme
and growth studies have provided evidence of popula-
tion di!erentiation related to latitude and altitude
(Illingworth 1976; Yeh et al. 1985).

Following forest harvesting, lodgepole pine may be
regenerated arti"cially, by planting seedlings or nat-
urally. On naturally regenerated sites cone-bearing
branches are dispersed across the site by drag scari"ca-
tion, and subsequent regeneration depends upon natu-
ral seed cast from the serotinous cones which open in
response to the warm air temperatures at the ground
surface. For planted stands, cone-bearing branches are
removed from the site during harvesting, and areas are
subsequently planted with nursery-grown seedlings de-
rived from local, wild-collected, bulked seed sources.
Both methods have implications for genetic diversity in
regenerated stands. Fewer serotinous cones may open
in cutblocks than would occur naturally following "re,
potentially leading to lower diversity in harvested, nat-
urally regenerated stands. In contrast, the bulking of
seed from many populations within the breeding region
may result in higher genetic diversity in planted stands,
but lower diversity among them. Subsequent e!ects of
selection during nursery production would possibly
further modify genetic diversity.

In recent years there has been increasing interest in
the use of DNA-based markers for a variety of applica-
tions in population genetics, conservation and tree
improvement. Both RAPD (randomly ampli"ed poly-
morphic DNA) and microsatellite (or simple sequence
repeat, SSR) markers show much promise in this regard
(Haymer 1994). RAPDs have been recently used to:

identify hybrid spruce (Khasa and Dancik 1996); quan-
tify genetic diversity in Norway spruce (Bucci and
Menozzi 1995); identify clones and quantify genetic
variation in Sitka spruce (Van den ven and McNicol
1995); assess genetic distance in Pinus leucodermis
(Bucci et al. 1997) and quantify genetic variation in
other native plants and crop species (Hu! et al. 1993;
Skroch and Nienhuis 1995). SSR markers have been
used to quantify genetic diversity and examine popula-
tion di!erentiation in agricultural crops (Morgante
et al. 1994; Hamann et al. 1995; Maughan et al. 1995;
MoK rchen et al. 1996) and trees, including radiata pine
(Smith and Devey 1994), bur oak (Dow et al. 1995),
Eucalyptus sp. (Byrne et al. 1996) and eastern white pine
(Echt et al. 1996).

Since RAPDs are a dominant marker type, the pres-
ence or absence of a band is de"ned as representing two
alleles at a locus and, therefore, calculation of genetic
diversity values must assume a Hardy-Weinberg equi-
librium. Consequently, these data do not allow for the
determination of allelic richness, e!ective number of
alleles or for the calculation of "xation indices. Isabel
et al. (1995) showed that expected heterozygosity is
underestimated, while population di!erentiation esti-
mates are in#ated, when based upon RAPD banding
phenotypes as opposed to the actual genotypes. SSRs,
on the other hand, are co-dominant and tend to have
multiple alleles per locus so that individuals can be
identi"ed as homozygotes or heterozygotes. The data
can, therefore, be used to compare observed and
expected heterozygosities and to calculate e!ective
number of alleles and "xation indices.

In the study presented here we used RAPDs and SSRs
to examine the impact of reforestation method on gen-
etic diversity in stands of lodgepole pine located in the
foothill region of west-central Alberta. Speci"cally, we
quanti"ed genetic variability for three stand types: un-
harvested mature lodgepole pine stands; harvested
stands which were left for natural regeneration; har-
vested stands which were planted with nursery-grown
seedlings; and in one group of seedlings produced (op-
erationally) for reforestation. A secondary objective of
the study was to compare RAPD and SSR markers with
respect to the estimates of genetic variation they provide.

Materials and methods

Material

Needle tissue was collected from lodgepole pine trees in 12 stands
within the Forest Management Agreement areas of Weldwood of
Canada Ltd (Hinton Division) (9 populations) near Hinton, Alberta
(533N 1173W) and Weyerhaeuser Canada Ltd (Grande Prairie)
(3 populations) near Grande Prairie, Alberta (553N 1183W)
(Table 1). Three di!erent stand types were sampled: unharvested
("re-origin) stands ('100 years), harvested (clearcut) planted stands
(19}33 years old) and harvested (clearcut) naturally regenerated
stands (19}33 years old) (Table 1).
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Table 1 Populations used in the
study: location, stand type, age,
site preparation and molecular
markers used for analysis

Population location! Stand type Age" Site RAPD SSR
(years) preparation#

H-U-1 Hinton (T54 R25) Unharvested '100 No X X
H-U-2 Hinton (T54 R25) Unharvested '100 No X X
H-U-3 Hinton (T54 R25) Unharvested '100 No X X
H-P-1 Hinton (T54 R24) Planted 32 Yes X X
H-P-2 Hinton (T54 R24) Planted 28 Yes X
H-P-3 Hinton (T54 R24) Planted 33 No X
H-NR-1 Hinton (T54 R24) Natural Regen 32 No X X
H-NR-2 Hinton (T54 R24) Natural Regen 33 Yes X
H-NR-3 Hinton (T54 R24) Natural Regen 25 Yes X
Seedlings Hinton (T54 R24) Seedlings X
G-U-1 Grande Prairie (T65 R08) Unharvested '100 No X
G-P-1 Grande Prairie (T65 R07) Planted 19 Yes X
G-NR-1 Grande Prairie (T65 R07) Natural Regen 19 Yes X

! General location (township, range)
"Age since "re (unharvested stands) or harvest (planted, naturally regenerated stands)
# Mechanical site preparation

Most harvested sites were subjected to mechanical site prepara-
tion 1 or 2 years following harvesting to create favorable microsites
for planting or natural regeneration (Table 1). In the Hinton area
the planted stands were planted 7}9 years after harvesting, while the
Grande Prairie stand was planted 3 years after harvesting. In the
Grande Prairie area the unharvested, planted and naturally regen-
erated populations represented neighboring stands ((2 km apart).
In the Hinton area, the naturally regenerated and planted stands
were randomly selected from one township within harvest planning
area Athabasca 16. All mature stands in Athabasca 16 had been
harvested, so we randomly collected unharvested stands from an
adjacent township in harvest planning area Athabasca 27 (similar
elevation, aspect and site types as in Athabasca 16). Stands in the
Hinton area were all located in the Upper Foothills Natural Sub-
region, while those in the Grande Prairie area were from the Lower
Foothills Natural Subregion (Alberta Environmental Protection
1994). In addition we used RAPDs to analyze a single group of 30
nursery-grown seedlings which had been pre-screened to meet the
minimum size and quality criteria and were ready for planting in the
Hinton area.

Current-year needle tissue was collected for 40 trees per popula-
tion from individuals that were a minimum of 30 m apart. The tissue
was kept cool until storage at !703C. RAPD and SSR loci, DNA
extraction and polymerase chain reaction (PCR) protocols are as
described elsewhere (Hicks et al. 1998). Ten RAPD loci and "ve SSR
loci were used to analyze the populations as summarized in Table 1.
Five populations were analyzed by both methods. Bootstrapping
(calculation of expected heterozygosity based on random sub-sam-
ples of between 10 and 40 individuals per population) demonstrated
that analysis of 30 individuals was su$cient to accurately quantify
genetic variation in these populations (Hicks 1997). Thus, all sub-
sequent analyses were based on 30 individuals per population.

Analysis

RAPD-PCR products were visualized on vertical agarose gels sub-
jected to electrophoresis for 6 h at 3 V/cm or overnight at 1.25 V/cm
in TBE (0.1 M TRIS-HCl, 0.1 M borate, 0.01 M EDTA, pH 8.0).
Gels were stained with ethidium bromide (0.5 lg/ml) for 30 min,
then photographed with a digital imager. GEL PRO ANA-
LYZERTM Ver. 2.0 software (Media Cybernetics) was used to detect
alleles. Bands were grouped together if their mobilities di!ered by
less than 3%. A total of ten RAPD loci, derived from four primers,
were scored (see Hicks et al. 1998). A spreadsheet was used to

calculate: expected heterozygosity (H
E
; Nei's unbiased estimate for

small population size, Nei 1978) for each locus and each population;
species-level expected heterozygosity based on these populations
(H

T
); the proportion of variation that is due to population di!erenti-

ation (F
ST

) for each locus and over all populations (Hartl and Clark
1989); and genetic distance (Nei 1978).

SSR-PCR products were subjected to electrophoresis in TBE at
40 W for 2.5 h on a 6% denaturing acrylamide gel containing 7 M
Urea. X-ray images of dried gels were used to score alleles by hand.
Alleles were sized using a molecular-weight ladder generated from
a sequencing reaction of known DNA sequence. Five SSR loci were
scored [APC 3, 9, 11, 13, 15 (APC"Alberta Pinus contorta); Hicks
et al. 1998]. Alleles at each locus were assigned letter codes, and
POPGENE (Yeh et al. 1997) was used to calculate allele frequencies
and estimates of genetic variation as follows: expected heterozy-
gosity (Nei's unbiased estimate, Nei 1978) for each locus, population
and the species (based on these populations); observed hetero-
zygosity; average number of alleles; e!ective number of alleles (num-
ber of alleles that would result in that level of heterozygosity if all
alleles were in equal frequency; Hartl and Clark 1989); F-statistics
[the proportion of variation due to population di!erentiation (F

ST
),

de"ciency of heterozygotes relative to Hardy-Weinberg expectation
(F

IS
) (Hartl and Clark 1989; Weir 1990)], and genetic distance (Nei

1978). Paetkau et al. (1997) found Nei's unbiased measure of genetic
distance to be e!ective for "ne-scale examination of population
variation using SSR markers.

Analysis of variance (ANOVA) was used to examine di!erences in
expected heterozygosity as a function of marker type (RAPD or
SSR), stand type (unharvested, naturally regenerated, planted) and
population using the following model:

Y
ijkl

"k#M
i
#S

j
#MS

ij
#P(S)

k(j)
#e

l(ijk)

where Y
ijkl

"the observation, k"the overall mean, M
i
"the ith

marker type, S
j
"the jth stand type, MS

ij
"the interaction of

marker and stand type, P(S)
k(j)

"the kth population within the jth
stand type, and e

l(ijk)
"random error associated with population

within stand type by marker. Di!erences were considered signi"cant
at a"0.05. Principal Components Analysis (PCA) ordination (using
CANOCO, Ter Braak 1988) was used to examine relationships
among populations based on multilocus allele frequencies for both
RAPD and SSR data. This type of multivariate analysis has proven
useful in understanding patterns of population di!erentiation be-
cause it can reveal multilocus genotypic structure, whereas univari-
ate measures, such as genetic distance, cannot (Yeh et al. 1985;
Knowles 1985).
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Table 2 Results of analysis of variance on expected heterozygosity
(H

E
)

Source of variation df P

Marker type 1 0.01
Stand type! 2 0.25
Marker-by-stand type 2 0.74
Population within stand type 9 0.59

! Including unharvested, naturally regenerated and planted stands

Table 3 Genetic variation for the
13 populations based on ten
RAPD loci or "ve SSR loci for
n individuals per population,
means across all populations for
each marker type, and species-
level estimates (based on these
populations)

RAPD n H
E
! SSR n na" ne# H

O
$ H

E

H-U-1 30 0.44 H-U-1 28 10.8 7.07 0.46 0.67
H-U-2 30 0.48 H-U-2 29 13.0 7.95 0.44 0.77
H-U-3 30 0.40 H-U-3 29 12.8 7.44 0.48 0.76
H-NR-1 30 0.42 G-U-1 30 12.2 7.10 0.47 0.74
H-NR-2 30 0.34 H-NR-3 28 11.2 6.39 0.43 0.69
H-NR-3 30 0.42 G-NR-1 28 11.0 6.65 0.49 0.73
H-P-1 30 0.47 H-P-3 29 12.6 7.42 0.46 0.78
H-P-2 30 0.38 G-P-1 27 10.4 6.03 0.46 0.71
H-P-3 30 0.45
Seedlings 30 0.47

Mean 0.43 Mean 11.8 7.01 0.46 0.73

All populations RAPDs H%
T

F&
ST

SSRs H
T

F
ST

F'
IS

0.46 0.061 0.74 0.028 0.360

! H
E
, Expected heterozygosity (Nei's unbiased estimate)

"na , Observed number of alleles
# ne, E!ective number of alleles (Hartl and Clark 1989)
$H

O
, Observed heterozygosity

% H
T
, Expected heterozygosity for the species, based on these populations

&F
ST

, Proportion of genetic variability that is due to population di!erentiation
' F

IS
, De"ciencies of heterozygotes relative to Hardy}Weinberg expectations

Results and discussion

There was a signi"cant di!erence in expected hetero-
zygosity (H

E
) among marker types but no e!ect of

stand type, population, or marker-by-stand type inter-
action (Table 2). On average, however, the naturally
regenerated stands showed lower H

E
than the unhar-

vested stands (11% for RAPD loci; 4% SSR loci;
Table 3, Fig. 1a, b). GoK moK ry (1992) found a 13% reduc-
tion in expected heterozygosity for planted (vs unhar-
vested) stands and an 8% increase in diversity for
naturally regenerated stands of Norway spruce (Picea
abies), and reported this as a signi"cant impact of
arti"cial regeneration on genetic diversity, although no
signi"cance testing was done. In contrast, Knowles
(1985) found that one planted and one naturally regen-
erated stand of jack pine (Pinus banksiana) had higher
observed heterozygosity (13% and 16%, respectively)
than an old, unharvested stand, but she considered all
stands to have &similar' diversity. To thoroughly exam-
ine the impacts of forest management on genetic diver-
sity it is essential to have a proper replication of stand
types and to test for statistical signi"cance.

The high levels of diversity in the planted stands
concur with the high level of diversity we found in the
group of operationally produced seedlings, (H

E
"0.47

for RAPDs). These seedlings also appeared to be a
good re#ection of allele frequencies found in unharves-
ted stands (see Table 6, Fig. 2 and discussion below;
cf. El-Kassaby and Thomson 1996; Stoehr and El-
Kassaby 1997). In contrast to previous suggestions
(Silen and Osterhaus 1979; Campbell and Sorensen
1984; Muona et al. 1988), procedures for commercial
seed collection and nursery seedling production do not
appear to modify genetic diversity relative to natural
stands.

Although it has been suggested that allelic richness
measures may be more informative than measures of
heterozygosity when examining changes in gene pools
due to disturbance (Marshall and Brown 1975; Buchert
et al. 1997), only co-dominant markers are useful for
this purpose. We saw no signi"cant di!erence in total
or mean alleles per SSR locus among the three stand
types (not shown) despite their di!erent disturbance
histories.

Expected heterozygosity as measured by SSRs was
1.7 times that obtained using RAPD markers [mean
H

E
of 0.73 (range: 0.69}0.78, SSR) vs 0.43 (range:

0.34}0.48, RAPD); H
T
: 0.74 vs 0.46, respectively]. In

general, our values are comparable to the few published
in the literature. Using 20 RAPD loci in Norway spruce
(Picea abies), Bucci and Menozzi (1995) measured an
average H

E
"0.334. Average H

E
for SSR loci in both

radiata pine (Pinus radiata; 2 loci, 96 individuals, Smith
and Devey 1994) and bur oak (Quercus macrocarpa;
3 loci, one population, Dow et al. 1995) was approxim-
ately 0.70. Pfei!er et al. (1997) obtained an H

E
of

0.43}0.94 (7 SSR loci, Norway spruce) with 6}22, alleles
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Fig. 1a+c Mean expected heterozygosity (H
E
) (standard error) for

the three stand types based on a RAPDs, b SSRs and c comparison
of H

E
by both marker types for 5 populations. ;nharv unharvested,

natreg naturally regenerated

per locus. In a study of eastern white pine (Pinus
strobus), Echt et al. (1996) found an average observed
heterozygosity (H

O
) of 0.52 with a mean of 5.4 alleles

per locus (16 SSR loci, 16 trees). Our average H
O

was
0.46 with 11.8 alleles per SSR locus (Table 3).

Expected heterozygosities for both marker types are
much higher than for isozyme studies of lodgepole pine
(0.16}0.19), which typically include both polymorphic
and monomorphic loci (Yeh and Layton 1979; Dancik
and Yeh 1983; Yang and Yeh 1995). Isabel et al. (1995)
found H

E
for black spruce based on isozymes (13 loci)

was very similar to that based on RAPDs when the
latter loci were selected randomly without regard to
their monomorphic or polymorphic nature. Isozymes
may also have lower diversity because some mutations
will not produce detectable di!erences in isozyme mo-
bility and others may be selected against if they result in
a non-functioning enzyme. For the 5 populations we
assessed by both RAPD and SSR markers there were
di!erences in the rank order of populations (for H

E
)

depending on the marker type used (Table 3, Fig. 1c).
This is not surprising given the slight di!erences in
H

E
among these populations. RAPD loci showed rela-

tively little variation in H
E

(0.34}0.49) as compared
to SSR loci (0.51}0.95) (Table 4). This re#ected the
variation in number of alleles per SSR locus which, in
turn, was correlated with SSR repeat length (Table 5).
Pfei!er et al. (1997) also found a correlation between
SSR repeat length and alleles per locus. There was
more variation in F

ST
among loci for RAPDs

(0.011}0.126) than for SSRs (0.02}0.044).
SSR locus APC 15 had an observed heterozygosity

similar to that expected under Hardy-Weinberg
(F

IS
"!0.064). All other loci showed a de"ciency

of heterozygotes (F
IS

ranged from 0.177 to 0.648) with
an overall F

IS
"0.360 (Tables 3, 4). Heterozygote

de"ciencies have also been found in other wind-pollin-
ated and dispersed conifers (Guries and Ledig 1981;
Dancik and Yeh 1983; Knowles 1991; Wang and Mac-
donald 1992; Sproule and Dancik 1996; Liu and
Knowles 1991). Heterozygote de"ciencies can be
caused by inbreeding (assortative mating), selection
against heterozygotes, the Wahlund e!ect (population
subdivision into separate breeding units) or selection-
induced microscale di!erentiation (Brown 1978; Epper-
son 1990; Sproule and Dancik 1996; Knowles 1991;
Bush and Smouse 1992). Lodgepole pine is an early
successional species that regenerates quickly after "re
by the release of seeds from serotinous cones. Thus,
family structure could easily develop in populations
and lead to some degree of inbreeding, simply re#ecting
outcrossing among related individuals which are spa-
tially grouped (Linhart et al. 1981; Sproule and Dancik
1996).

Both marker types showed that the vast majority
(94%, RAPDs; 97%, SSRs; based on F

ST
) of genetic

diversity was contained within populations and that
there was relatively little di!erentiation among popula-
tions (Table 3). This is similar to what has been shown
using isozyme markers (Dancik and Yeh 1983; Yeh and
Layton 1979; Yeh et al. 1985; Yang et al. 1996) and has
been attributed to extensive gene #ow and large popu-
lation size (Epperson and Allard 1989). In contrast,
Bucci et al. (1997) found much higher F

ST
values in

Pinus leucodermis for RAPDs than for isozymes. In our
study, it does not appear that estimates of population
di!erentiation are being in#ated by the assumption
of Hardy-Weinberg when using RAPD markers (Isabel
et al. 1995).

Our values for F
IS

are considerably higher than pub-
lished values based on isozyme markers for lodgepole
pine (0.03, Dancik and Yeh 1983; 0.06, Yeh et al. 1985)
or other conifers (Guries and Ledig 1981; El-Kassaby
and Ritland 1996; Stoehr and El-Kassaby 1997). We
found only one published study for which F

IS
values

could be determined for SSR data. In 20 unrelated
individuals of Eucalyptus nitens F

IS
was 0.306 with
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Fig. 2a, b Scores for the "rst two PCA axes based on a RAPD data
(10 populations) and b SSR data (8 populations). The eigenvalues for
axes 1 and 2 explain the variance accounted for by the set of
variables associated with that axis, but there is no &signi"cance' level
per se for the analysis (Tabachnick and Fidell 1989)

Table 4 Genetic variation for the ten RAPD loci and "ve SSR loci. Averages across n populations

RAPD n H
E
! F

ST
SSR n F

ST
F

IS
na ne H

O
H

E

1 10 0.485 0.011 APC3 8 0.044 0.648 13 2.43 0.197 0.588
2 10 0.451 0.034 APC9 8 0.020 0.390 34 19.48 0.565 0.949
3 10 0.466 0.037 APC11 8 0.036 0.631 27 3.56 0.255 0.719
4 10 0.434 0.037 APC13 8 0.020 0.177 28 16.22 0.757 0.938
5 10 0.480 0.056 APC15 8 0.031 !0.064 3 2.05 0.527 0.512
6 10 0.377 0.116
7 10 0.341 0.126
8 10 0.362 0.117
9 10 0.482 0.048

10 10 0.390 0.057

!H
E
, na, ne, H

O
, F

IS
and F

ST
are as de"ned in Table 3

observed and expected heterozygosities of 0.58 and
0.83, respectively (4 SSR loci, Byrne et al. 1996). A pos-
sible explanation for these higher inbreeding coe$-
cients is that SSR loci are non-coding, and thus
homozygous genotypes may be retained in the popula-
tion longer than for allozymes which represent a more
conservative portion of the genome and may be under
selective pressure (Mitton 1994).

Genetic distance values (D) (Table 6) were fairly sim-
ilar for both marker types (RAPD mean"0.056; SSR
mean"0.063) but higher than for isozyme studies
of lodgepole pine (D"0.003}0.007, Dancik and Yeh
1983). This may re#ect a greater power of these DNA-
based markers for detecting di!erences among popula-
tions or the more rapid evolution of non-coding parts
of the genome. It could also be due to the fact that both
polymorphic and monomorphic loci are used for the
calculation of genetic distances based on isozyme data,
whereas only polymorphic loci are used for RAPDs
and SSRs.

Bucci et al. (1997) found much higher ("ve times)
genetic distance values for RAPDs than for isozymes
but a strong correlation between pair-wise population
distances by both marker types. In our study there
was no correlation between distance values for the
two marker types, based on pair-wise comparisons
for the 5 populations analyzed by both methods
(not shown). Based on the SSR data there was no
greater di!erentiation between the Hinton and Grande
Prairie regions than within either (average D within
both regions"0.069; between regions"0.058). The
seedling population was very similar to all other
stand types in the Hinton region (D based on
RAPDs"0.036). Otherwise, there was no obvious pat-
tern of similarity based on stand type or geographic
location.

The ordination of allele frequencies also indicated
that geographic location or stand type had little in#u-
ence on similarity in allele frequencies (Fig. 2). Using
genetic distance calculations and ordination of isozyme
data, GoK moK ry (1992) showed divergence in allele fre-
quencies for planted compared to naturally regenerated
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Table 5 Mean length of repeat sequence at the "ve SSR loci and
total number of alleles detected at each SSR locus. There was
a signi"cant correlation between the two (r2"0.61)

SSR Length of
base-pair

Total number of
alleles detected

APC3 102.0 13
APC9 131.9 34
APC11 161.6 27
APC13 136.7 28
APC15 100.8 3

Table 6 Genetic distance among populations based on RAPDs and SSRs (Nei's unbiased measure, Nei 1978)
RAPDs

Population H-U-1 H-U-2 H-U-3 H-P-1 H-P-2 H-P-3 H-NR-1 H-NR-2 H-NR-3

H-U-1 ******
H-U-2 0.0469 ******
H-U-3 0.0556 0.0456 ******
H-P-1 0.0376 0.0130 0.0320 ******
H-P-2 0.0760 0.0644 0.0787 0.0528 ******
H-P-3 0.0356 0.0496 0.0523 0.0238 0.0772 ******
H-NR-1 0.0568 0.0344 0.0425 0.0381 0.0691 0.0800 ******
H-NR-2 0.0939 0.0814 0.0460 0.0622 0.0243 0.1039 0.0737 ******
H-NR-3 0.0570 0.0562 0.0736 0.0462 0.0658 0.0599 0.0231 0.0927 ******
SEEDL 0.0335 0.0190 0.0279 0.0172 0.0529 0.0269 0.0400 0.0650 0.0402

SSRs

Population H-U-1 H-U-2 H-U-3 H-P-3 H-NR-3 G-U-1 G-P-1

H-U-1 ******
H-U-2 0.050 ******
H-U-3 0.065 0.051 ******
H-P-3 0.129 0.074 0.118 ******
H-NR-3 0.018 0.039 0.045 0.099 ******
G-U-1 0.041 0.046 0.068 0.065 0.025 ******
G-P-1 0.029 0.071 0.069 0.086 0.046 0.059 ******
G-NR-1 0.041 0.076 0.036 0.133 0.042 0.084 0.067

stands of Norway spruce. Ordination of our RAPD
allele frequency data veri"ed that the seedlings had
similar allele frequencies to those of the 3 Hinton un-
harvested populations. The three Hinton naturally re-
generated stands and one of the Hinton planted stands
showed divergence from this core group.

The lack of a correlation between genetic and geo-
graphic distance is consistent with previous isozyme
studies that showed signi"cant geographic variation
only over a much wider range of the species distribu-
tion (Yeh and Layton 1979; Yeh et al. 1985). Yeh et al.
(1985) suggested that altitudinal variation may be im-
portant at a smaller scale but our sampling was not
intensive enough to test this. Rehfeldt (1988) also found
that clinal variation of ecological traits in lodgepole
pine was more closely associated with steep elevational
gradients but was a!ected little by geographic di!er-
ences. Also noteworthy in our data is the lack of con-

cordance in population divergence as measured by the
two marker types. This could simply re#ect a lack of
genetic drift among these populations such that diver-
gence as measured by these non-coding regions of the
genome is essentially random. Further, it would be
preferable to base genetic distance measures on larger
numbers of SSR loci, since they have so many alleles.

In this study we used old, unharvested stands as the
benchmark for comparison of genetic diversity in har-
vested stands. We did not speci"cally address changes
in genetic diversity with age although stands of forest
trees could be reasonably expected to display changes
in genetic diversity over time. Since lodgepole pine is
very shade intolerant there is typically very little ingress
into stands following the initial establishment phase.
Stands do, however, experience considerable mortality
and a reduction in density through the self-thinning
phase. This mortality could lead to either a decline in
genetic diversity, due to bottleneck e!ects, or possibly
an increase if homozygotes demonstrate slower growth
and thus greater mortality during the self-thinning
phase (Mitton et al. 1981). In a very old stand of Pinus
sylvestris Tigerstedt et al. (1982) demonstrated a de"-
ciency of heterozygotes in trees up to 100 years old but
the oldest trees (300}400 years) were in Hardy-Wein-
berg equilibrium. We are currently in the process of
using isozymes to develop a comprehensive baseline
on patterns of genetic diversity of lodgepole pine in
northern Alberta, including relationship to stand age,
elevation, silvicultural treatment and stand initiation
history.
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